

CONCEPT Sales and Technical Training 2010

February 4-6, 2010 Hotel Crowne Plaza, Zürich

New SCALE-2 High-voltage Drivers Featuring Direct Paralleling

Heinz Rüedi

CT-Concept Technologie AG

Applications

- Traction main propulsion drives
- Wind power converter
- Statcom
- Pulse power applications
- HV DC
- Power supplies and UPS
- Power quality
- Industrial Drives

New Product Platforms Release 2010

1SP0635 - Plug-and-Play Driver for 1.2kV, 1.7kV and 3.3kV IGBT modules

- ▶ Driver for single switch IGBT modules in 130x140mm and 190x140mm
- Housing with 32mm creep path

1SP0335 – Plug-and-Play Driver for 3.3kV, 4.5kV and 6.5kV IGBT modules

- ▶ Driver for single switch IGBT modules in 130x140mm and 190x140mm
- Housing with 65mm creep path

→ Both products support direct paralleling!

Remember...?

- Principle of a central driver extended by active clamping
- Principle of direct paralleling (driving parallel-connected IGBTs with individual drivers)

How to Make Direct Paralleling for 3.3kV to 6.5kV?

We have a perfect working principle of direct paralleling

... but ...

- We don't have signal transformers for 3.3kV to 6.5kV
- Multilevel-topologies need even higher isolation voltages
- Mostly, users prefer fiber-optic interfaces for high-voltage

... what to do now?...

How to Make Direct Paralleling for 3.3kV to 6.5kV?

Let's do it together...

- We start with the well known direct paralleling...
- We delete the not usable transformer...
- We add a fiber-optic interface...
- And a high-voltage DC/DC converter
- And we get our master driver
- Finally we connect the slave drivers to the master

Illustrative Example of a Phase Leg with 3 Modules in Parallel

- Only one fiber optic interface and one power supply per paralleled module group
- Parallel bus cable contains power supply, drive information and monitoring of slaves

Diagram Master and Slave Driver for 1.2kV, 1.7kV and 3.3kV IGBTs

Adaptation for

- ABB
- Dynex
- Fuji
- Hitachi
- Infineon
- Mitsubishi

Key Features: Driver Solution for 1.2kV, 1.7kV and 3.3kV

- On-board 10W power supply with 15V input voltage on master driver
- +15V/-10V gate voltage
- ▲ 35A gate current (every driver)
- Direct paralleling of 2 to 4 modules
- Gate monitoring on every driver (master and slaves)
- Dynamic Vce monitoring (short-circuit detection) on master driver
- Advanced active clamping on every driver
- Power supply monitoring on every driver
- Reliable design
- Superior EMC

Direct Paralleling Solution for 1.2kV, 1.7kV and 3.3kV

- Master driver (left) and slave driver (right) screwed onto IGBT modules
- Direct paralleling of 2 to 4 modules
- Combined parallel-, 3-level / multi-level-topologies

Master and Slave Driver for 3.3kV, 4.5kV and 6.5kV IGBTs

Key Features: Driver Solution for 3.3kV, 4.5kV and 6.5kV IGBTs

- External 5W power supply with 15V input voltage on master driver
- +15V/-10V gate voltage
- ▲ 35A gate current (every driver)
- Direct paralleling of 2 to 4 modules
- Gate monitoring on every driver (master and slaves)
- Dynamic Vce monitoring (short circuit detection) on master driver
- Dynamic active clamping on every driver
- Power supply monitoring on every driver
- Reliable design
- Superior EMC

Plug-and-Play Driver for 3.3kV to 6.5kV IGBT modules (Master)

Advantages of the Direct Paralleling Approach

- Both single and parallel-connected modules can be driven
- Simplest scaling of inverter output and drive current
- Uncompromising, safe and reliable concept
- Optimal switching behavior, lowest switching losses
- Detailed diagnosis: every gate is monitored
- No coupling of the gates, thus no mutual oscillations of the IGBTs possible
- No effects of the capacitive equalizing currents via the module baseplate
- No effects of inductive coupling on the gate cabling
- No complex synchronization needed
- Equipment series can be simply extended to parallel connection
- No development effort, no adaptation work
- Simple to set up, no tangle of cables
- Minimal derating and maximum utilization of the IGBT modules
- Use of optimized large-series system components

Measurement with 1SP0635V (Master) and 1SP0635D (Slave)

- 2 modules in parallel
- 2.2kV dc-bus voltage
- 2 x 3kA collector current
- Master 1SP0635V and slave driver 1SP0635D
- Statically and dynamically very symmetrical current distribution
- Modules and construction define the rate of symmetry
- Maximum usage of parallel connected IGBTs

I_C, V_{CE} turn-on characteristics

Availability of the New Drivers

1SP0635 – Plug-and-Play Driver for 1.2kV, 1.7kV and 3.3kV IGBT modules

Sample orders: Now (Specify requested IGBT type number)

Target datasheet: Now

Engineering sample delivery: Now

Application Manual: Now

Production start: Q2/2010

1SP0335 – Plug-and-Play Driver for 3.3kV, 4.5kV and 6.5kV IGBT modules

Prototype testing: Now

Sample orders: Now (Specify requested IGBT type number)

► Target datasheet: Q2/2010

Engineering samples: Q2/2010

Application Manual: Q3/2010

Production start: Q3/2010

Many Thanks!

